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Improving AlphaFold2-based protein tertiary
structure prediction with MULTICOM in CASP15
Jian Liu1, Zhiye Guo 1, Tianqi Wu1, Raj S. Roy1, Chen Chen1 & Jianlin Cheng 1✉

Since the 14th Critical Assessment of Techniques for Protein Structure Prediction (CASP14),

AlphaFold2 has become the standard method for protein tertiary structure prediction. One

remaining challenge is to further improve its prediction. We developed a new version of the

MULTICOM system to sample diverse multiple sequence alignments (MSAs) and structural

templates to improve the input for AlphaFold2 to generate structural models. The models are

then ranked by both the pairwise model similarity and AlphaFold2 self-reported model quality

score. The top ranked models are refined by a novel structure alignment-based refinement

method powered by Foldseek. Moreover, for a monomer target that is a subunit of a protein

assembly (complex), MULTICOM integrates tertiary and quaternary structure predictions to

account for tertiary structural changes induced by protein-protein interaction. The system

participated in the tertiary structure prediction in 2022 CASP15 experiment. Our server

predictor MULTICOM_refine ranked 3rd among 47 CASP15 server predictors and our human

predictor MULTICOM ranked 7th among all 132 human and server predictors. The average

GDT-TS score and TM-score of the first structural models that MULTICOM_refine predicted

for 94 CASP15 domains are ~0.80 and ~0.92, 9.6% and 8.2% higher than ~0.73 and 0.85 of

the standard AlphaFold2 predictor respectively.
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Proteins carry out various functions such as catalyzing che-
mical reactions and regulating gene expression in living
systems. The function of a single-chain protein is largely

determined by its tertiary structure. Therefore, determining
protein structures has been a major pursuit of the scientific
community for decades. As low-throughput, expensive experi-
mental techniques of determining protein structures such as x-ray
crystallography can be only applied to determine the structures of
a tiny portion of the proteins in nature. The computational
prediction of protein structures from sequences holds the key of
obtaining the structures for most proteins. With the decades of
efforts of developing computational protein structure prediction
methods, particularly the development of deep learning methods
in the field1–6, the accuracy of protein tertiary structure predic-
tion has continued to improve and reached a high level in the last
few years.

In the 2020 CASP14 experiment7, AlphaFold28 predicted high-
accuracy structures for most protein targets. Since then, it has
become the most-widely used protein structure prediction tool.
Despite its huge success, AlphaFold2 still cannot predict high-
accuracy structures or even correct structural fold for some
proteins that have very few or no homologous sequences in the
existing protein sequence databases. Moreover, most existing
protein structure prediction methods built on top of
AlphaFold2 still do not take protein-protein interaction into
account for protein tertiary structure prediction, even though the
AlphaFold-Multimer work4 has shown that considering the
interaction between a protein and its partners in a protein
complex is important to predict its tertiary structure.

In this work, we develop a new version of the MULTICOM
protein structure prediction system to further improve
AlphaFold2-based protein structure prediction by enhancing the
input fed to AlphaFold2, using complementary approaches to
rank AlphaFold2-generated structure models, and refining the
top ranked models. Specifically, MULTICOM samples a set of
diverse multiple sequence alignments (MSAs) from various
sequence databases and identifies templates from different tem-
plate databases as input for AlphaFold2 to generate more struc-
tural models, which increases the likelihood of AlphaFold2
generating high-quality structural models in the model sampling
process. In addition to using the pLDDT8 score that AlphaFold2
assign to each structural model to rank models, MULTICOM
applies other complementary tertiary structure quality assessment
methods such as APOLLO9 of using the average similarity
between a model and other models for the same target as quality
score to rank them.

Moreover, MULTICOM introduces an iterative structure
alignment-based refinement method to further improve the
quality of the structural models. Specifically, it uses Foldseek10

to search an input structural model against the protein struc-
tures in the Protein Data Bank (PDB)11 and millions of pre-
dicted protein structures in the AlphaFoldDB12 to find similar
structures to augment the initial MSA used to generate the input
model. The Foldseek-based structure alignment may find
remote homologs or analogous proteins than the sequence
alignment methods (e.g., HHblits) used by AlphaFold2 to
enhance MSAs, which can be useful if the target has few
homologous sequences. Moreover, Foldseek-based structure
alignment can also find alternative structural templates that the
sequence search may not find. The augmented MSA and alter-
native structural templates are used for AlphaFold2 to generate
refined models.

Furthermore, for a monomer target that is a chain of a protein
assembly, to consider its interaction with other protein chains in
the assembly, MULTICOM uses our assembly/complex structure
prediction method13 built on top of AlphaFold-Multimer to

predict the quaternary structure of the assembly first, and then it
extracts the tertiary structure of the chain from the quaternary
structure as a predicted structure of the monomer target.

MULTICOM participated in the tertiary structure prediction in
the CASP15 experiment as both server and human predictors
with different model ranking strategies, which ranked among the
top CASP15 server and human predictors and performed much
better than the standard AlphaFold2 predictor, demonstrating
our approach of improving AlphaFold2-based protein tertiary
structure prediction is effective.

Results
The comparison between MULTICOM servers and other
CASP15 server predictors. According to the CASP15 official
ranking metric, MULTICOM_refine, MULTICOM_egnn, MULTI-
COM_deep and MULTICOM_qa ranked 3rd to 7th among server
predictors (https://predictioncenter.org/casp15/doc/presentations/
Day2/Assessment_TertiaryStructure_DRigden.pptx). The CASP15
official ranking metric for a model in a pool of models is the weighted
average of the z-scores of multiple scoring metrics including lDDT14,
CADaa15, SG16, sidechain (side chain metrices like Average Absolute
Accuracy (AAA)), MolProbity17, backbone (backbone quality),
DipDiff18, GDT-HA19, ASE (Accuracy Self Estimate based on the
difference of pLDDT and lDDT), and reLLG20 as shown in the
formula 1

16 ðZlDDT þ ZCADaa þ ZSGþ ZsidechainÞ þ 1
12 ðZMolPrb�clash þ

Zbackbone þ ZDipDiff Þ þ 1
6 ðZGDT�HAþ ZASE þ ZreLLGÞ. Such a score

was calculated for no. 1 submitted model for each target by each
predictor. The sum of the scores for all the CASP15 targets was the
total score of a predictor, which was used to rank all the predictors. In
addition to the no. 1 model, CASP15 also calculated the total score
for the best of five models for the targets submitted by a predictor,
which was used to rank the predictors alternatively.

To complement the CASP15 evaluation, in this analysis, we
mainly use three widely scoring metrics—GDT-TS score, lDDT
score, and TM-score—to evaluate MULTICOM predictors from
different perspectives to elucidate their strengths and weaknesses.

The average GDT-TS scores of the top 20 CASP15 server
predictors on 94 CASP15 domains are shown in Table 1. The
standard AlphaFold2 predictor (NBIS-AF2-standard, AlphaFold
v2.2.0) run by the Elofsson Group during the CASP15 experiment
on all 94 domains ranks 20th. The 94 domains were extracted
from 68 full-length tertiary structure prediction targets as
individual assessment units by CASP15 organizers and assessors.
Among the 94 domains, 47 domains are classified as Template-
Based Modeling domains (TBM-easy or TBM-hard) whose
structural templates can be identified among the known protein
structures in the Protein Data Bank (PDB). The remaining 47
domains are classified as Free-Modeling (FM) domains that do
not have a structural template or something between FM and
TBM (i.e., FM/TBM) that may have some very weak template
impossible for the existing sequence alignment methods to
identify.

According to the average GDT-TS score on all 94 domains,
MULTICOM server predictors (MULTICOM_refine, MULTI-
COM_egnn, MULTICOM_deep, MULTICOM_qa) ranked from
3rd to 6th among 47 server predictors and yielded largely similar
performance. Our best performing server predictor - MULTI-
COM_refine ranks 3rd and has an average GDT-TS score of
0.7964, lower than 0.8433 of UM-TBM and 0.8397 of Yang-server
but higher than all other predictors. Particularly, the average
GDT-TS score of MULTICOM_refine is 9.3% higher than 0.7285
of NBIS-AF2-standard, indicating a notable improvement over
the default AlphaFold2 has been achieved.

The average GDT-TS score of MULTICOM_refine on the 47
TBM domains is 0.8944, which is the same as that of Yang-server
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and slightly lower than 0.9027 of UM-TBM, but higher than all
the other servers (e.g., 8.3% higher than 0.8258 of NBIS-AF2-
standard).

The main difference between MULTICOM servers and the top
two servers (Yang-server and UM-TBM) lies in some harder FM
and FM/TBM domains, particularly the ones involved in protein-
protein interaction in protein assemblies. The average GDT-TS

score of the MULTICOM servers on the FM and FM/TBM
domains is about ~0.7, which is lower than 0.7840 and 0.7850 of
Yang-server and UM-TBM. Quite some difference comes from
the 7 FM domains of six tertiary structure prediction targets
(T1137s1-T1137s6) that are the subunits of one assembly target -
H1137 (stoichiometry: A1B1C1D1E1F1G2H1I1) (see the native
structure of H1137 in Supplementary Fig. 1a). The six chains A,
B, C, D, E, and F (i.e., T1137s1 - T1137s6) of H1137 form a
twisted helical transmembrane channel. The structure of the six
chains needs to be predicted together in order to build a
transmembrane channel to correctly predict the structure of the 7
FM domains in these chains. However, because the chains were
released one by one for tertiary structure prediction during
CASP15, our servers predicted the structures of the first several
chains separately until after all the chains were released, resulting
in the low-quality prediction for the FM domains in these chains.
Because each of T1137s1 - T1137s6 is a long, non-globular helical
structure that cannot be stabilized by itself, predicting the
structure of one single chain without considering its interaction
partners led to poor results. Moreover, AlphaFold-Multimer in
our MULTICOM system predicted two kinds of transmembrane
channels for the complex of the six chains: a largely straight one
and a bended one (Supplementary Fig. 1b, c). The former one is
much more similar to the native structure than the latter, whose
FM domains have much higher GDT-TS scores than the latter.
Unfortunately, when MULTICOM predicted the complex
structure of all the chains after their sequences were released,
the complex structure ranking method in MULTICOM selected
the latter, leading to lower GDT-TS scores for the FM domains of
some chains (e.g., T1137s6).

The performance of MULTICOM servers on the 68 full-length
CASP15 targets in comparison with top CASP15 server predictors
is reported in Supplementary Table 1. The average lDDT and
TM-scores of MULTICOM servers and other top CASP15
predictors are shown in Supplementary Tables 2–5. The results
in terms of lDDT and TM-scores are similar to those in terms of
GDT-TS scores.

The overall accuracy of MULTICOM_refine and its improve-
ment over the standard AlphaFold2. Figure 1a shows the dis-
tribution of TM-scores of the best of five models predicted by
MULTICOM_refine for the 94 domains. MULTICOM_refine was
able to predict the structure with the correct fold (TM-score >
0.5) for 85 domains (90.43%) out of 94 domains, 40 (85.11%) out

Fig. 1 The overall qualities of the protein structures predicted by MULTICOM_refine. a The histogram of the TM-scores of the best of five models
predicted by MULTICOM_refine for 94 domains (47 FM and FM/TBM domains and 47 TBM domains). b The GDT-TS of the top 1 model predicted by
MULTICOM_refine (y-axis) versus that of NBIS-AF2-standard (x-axis) on the 46 FM domains and 45 TBM domains.

Table 1 The performance of the top 20 out of 47 server
predictors in terms of the average GDT-TS of the top1
models (model 1) submitted by the server predictors for all
94 domains, 47 TBM domains and 47 FM and FM/TBM
domains.

Predictor ID Server name Avg.
GDT-TS
on 94
domains

Avg.
GDT-TS
on 47
TBM
domains

Avg.
GDT-TS
on 47
FM or
FM/
TBM
domains

62 UM-TBM40 0.8433 0.9027 0.784
229 Yang-server41 0.8397 0.8944 0.785
475 MULTICOM_refine42 0.7964 0.8944 0.6983
120 MULTICOM_egnn42 0.793 0.886 0.6999
158 MULTICOM_deep42 0.7922 0.8866 0.6977
86 MULTICOM_qa42 0.7917 0.8865 0.6969
35 Manifold-E43 0.7871 0.8821 0.692
166 RaptorX44 0.7808 0.8834 0.6782
288 DFolding-server45 0.7792 0.8755 0.6829
383 server_12446 0.7713 0.8866 0.6561
188 GuijunLab-DeepDA47 0.7646 0.8831 0.6462
298 MUFold48 0.7629 0.8783 0.6475
98 GuijunLab-Assembly49 0.7604 0.8746 0.6461
462 MultiFOLD50 0.7582 0.8767 0.6397
282 GuijunLab-Threader51 0.7578 0.869 0.6466
125 UltraFold_Server 0.7561 0.8782 0.6341
446 Shennong 0.7558 0.8732 0.6383
353 hFold52 0.7482 0.8635 0.633
466 ColabFold53 0.7352 0.796 0.6744
270 NBIS-AF2-standard54 0.7285 0.8258 0.6312

NBIS-AF2-standard is the standard AlphaFold2 predictor, which ranks 20th in terms of the
average GDT-TS score on the 94 domains. MULTICOM_refine ranks 3rd.
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of 47 FM domains, and 45 (95.74%) out of 47 TBM domains. For
76 (80.85%) of 94 domains, 31 (65.96%) out of 47 FM domains,
45 (95.74%) out of 47 TBM domains, MULTICOM_refine pre-
dicted at least one high-accuracy model with TM-score > 0.8.

The only two TBM domains for which MULTICOM_refine
failed to predict the correct fold are T1160-D1 (TM-score =
0.2825) and T1161-D1 (TM-score = 0.4546). Both of them are a
domain of a single-domain protein chain of a homodimer, which
has a small number of residues (29 and 48 residues, respectively),
even though the CASP15 provided full-length 48-residue
sequences of T1160 and T1161 that only differ in five residues.
Despite the high sequence similarity, they fold into two different
native conformations, making the structural prediction for the
two domains hard. In fact, only one model for T1160-D1 or 11%
of the models for T1161-D1 among all the models predicted by all
the CASP15 predictors have TM-score > 0.5, even though the
MSAs of the two targets contains hundreds of sequences,
indicating that most predictors encountered difficulty to predict
the structures for these two outlier targets using either
AlphaFold2 or AlphaFold-Multimer.

For the FM and FM/TBM domains, MULTICOM_refine failed
to predict a correct topology for T1122-D1, T1125-D5, T1125-
D6, T1130-D1, T1131-D1, T1137s2-D2, T1137s3-D2, T1137s4-
D2, T1137s6-D2 due to several different reasons. The reason that
it failed on T1137s2-D2, T1137s3-D2, T1137s4-D2, T1137s6-D2
associated with the same complex (assembly) H1137 is mostly
because the interaction between chains was not considered in the
tertiary structure prediction or the incorrect quaternary structure
for the complex was selected, which has been explained in Section
3.1. Predicting an accurate complex structure for H1137 is critical
to obtain good structures for these domains. The similar problem
happened to T1114s1, a subunit (chain A) of a large complex
H1114 (stoichiometry: A4B8C8). In the native state, the four A
chains interact tightly to form a cubic-like structure. However, the
structure of T1114s1 was not predicted with all four A chains
together by MULTICOM_refine, even though it was predicted
with the presence of some B chains and C chains, leading to a
low-quality model generated for it.

For T1122-D1, T1130-D1 and T1131-D1, very few or no
homologous sequences and no significant structural templates
could be found for them by the MSA sampling and monomer
template identification, leading to lower TM-scores (TM-
score=0.3705, 0.4372 and 0.2559, respectively) of the best models
predicted for them. In this case, sampling many more models
using AlphaFold2 with different parameters (e.g., a high number
of recycles) may be able to generate better models.

T1125-D5 and T1125-D6 are two hard domains of a large
1200-residue monomer target T1125 consisting of six domains
for which MULTICOM_refine did not generate good MSAs to
cover the two domains, leading to poor prediction for them.
Dividing this target into domains and predicting their structures

for the two domains separately may be able to generate better
MSAs and tertiary structures for them.

Despite its failure on the domains above, MULTICOM_refine
still performs significantly better than the standard AlphaFold2
predictor (NBIS-AF2-standard). Table 2 compares MULTI-
COM_refine and NBIS-AF2-standard in terms of average GDT-
TS of the top 1 model on 91 common domains from 65 out of 68
full-length targets for which both NBIS-AF2-standard and
MULTICOM_refine submitted predictions. Three domains
(T1109-D1, T1110-D1 and T1113-D1) that NBIS-AF2-standard
did not make predictions for were excluded from this analysis.
The average GDT-TS of MULTICOM_refine of top 1 models
predicted by MULTICOM_refine for the 91 domains is 0.7922,
significantly better than 0.7525 of NBIS-AF2-standard with
p-value= 0.0006692 according to one-sided Wilcoxon signed
rank test. Similar results have been observed for the best of five
models for the 91 domains, TBM domains, or FM and FM/TBM
domains. The largely similar results on the 65 full-length targets
are reported in Supplementary Table 6.

Figure 1b plots the per-domain GDT-TS score of the top 1
model predicted by MULTICOM_refine for each domain against
that of NBIS-AF2-standard. MULTICOM_refine has a higher
GDT-TS than NBIS-AF2-standard on 26 out of 46 FM domains
(56.52%) and 28 out of 45 TBM domains (62.22%). On 12
domains, the top 1 model of MULTICOM_refine has a much
higher GDT-TS than NBIS-AF2-standard (GDT-TS difference >
0.1), while on only two domains (T1122-D1 and T1125-D4)
MULTICOM_refine has a much lower GDT-TS (GDT-TS
difference <−0.1).

The importance of sampling more models using AlphaFold2
with diverse MSA and template inputs. The single-chain
structure prediction shared by the MULTICOM servers used
several different MSA and template inputs (Table 3) with
AlphaFold2 to sample structural models. Therefore, it is impor-
tant to evaluate if generating structural models with the diverse
MSAs and templates input different from the default MSAs and
templates used by AlphaFold2 can improve the accuracy of pre-
dicted structural models. All the MSA and template sampling
methods in Table 3 except img and img_seq_temp only applied to
a small number of targets are compared with NBIS-AF2-standard.
The method of pooling the models from the different MSA and
template sampling methods together is denoted as combine,
which is the final method used by the single-chain structure
prediction of the MULTICOM servers.

We compare the TM-scores of the best models that each
sampling method generated for CASP15 full-length targets with
those of NBIS-AF2-standard. During CASP15, the single-chain
structure prediction shared by the MULTICOM servers was
executed for 65 out of 68 full-length tertiary structure prediction

Table 2 The average GDT-TS scores of top 1 models or best of five models predicted for 91 domains by MULTICOM_refine and
NBIS-AF2-standard.

Top 1 Model Best of Five Models

Domain Type MULTICOM_refine NBIS-AF2-
standard

p-value MULTICOM_refine NBIS-AF2-
standard

p-value

All 91 domains 0.7922 0.7525 0.0006692 0.8185 0.7736 5.156e-06
46 FM & FM/TBM
domains

0.6939 0.6449 0.01347 0.7335 0.6746 0.0003845

45 TBM domains 0.8927 0.8625 0.009202 0.9054 0.8749 0.001516

The p-value for the difference between MULTICOM_refine and NBIS-AF2-standard is calculated with the one-sided Wilcoxon signed rank test. In all the situations, MULTICOM_refine performs
significantly better than NBIS-AF2-standard.
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targets, except for the three targets (T1114s1, T1114s2, T1114s3)
from a large complex H1114 due to the three-day time limit for
server prediction. The three targets along with T1109, T1110 and
T1113 which NBIS-AF2-standard did not make predictions for
were excluded from this comparison. Moreover, if a sampling
method only generated structural models for a subset of the
targets, we compare it with NBIS-AF2-standard on the common
targets which both of them made predictions for.

Figure 2a compares the TM-scores of the best models
generated by each sampling method and NBIS-AF2-standard
on the common set of targets. The average TM-score of the best
models generated by the combine method for 62 common targets
is 0.8105, significantly higher than 0.7838 of NBIS-AF2-standard
(p-value= 1.182e−07) according to one-sided Wilcoxon signed
rank test, demonstrating that using different MSAs and templates
with AlphaFold2 to generate more models can significantly
improve the quality of the best possible models.

The setting of the default sampling method in our single-chain
structure prediction uses AlphaFold2’s default MSA and template
search programs to search the updated sequence databases
(mgy_clusters_2022_05 and UniRef30_2021_03) and updated
template databases (pdb70_from_mmcif_220313) to generate
MSAs and templates for AlphaFold2 to predict 5 models with
two higher parameter values (i.e., num_ensemble= 8 and
num_recycles= 8). NBIS-AF2-standard also used the default
preprocessing programs with the similarly updated databases to
generate MSAs and templates for AlphaFold2 with the default
parameter values to predict 5 models. The average TM-score of
the best (or top1) models of our default sampling is 0.7913 (or
0.7766) on 62 common targets, only slightly higher than 0.7838
(or 0.77) of NBIS-AF2-standard. The difference is not significant
as the p-value of one-sided Wilcoxon signed rank test is 0.1522
(or 0.4287), indicating that the slight change of the parameters of
the default AlphaFold2 does not significantly change the quality
of the best (or top1) models.

In contrast, the change of MSA and template inputs has a more
significant impact on the quality of the best models generated for
the CASP15 targets. Four out of six sampling methods that
changed the input (i.e., default, default_seq_temp, original and
ori_seq_temp) have higher average TM-score of best models than
NBIS-AF2-standard. The p-value of the difference between three
sampling methods (i.e., default_seq_temp, original and ori_seq_-
temp) and NBIS-AF2-standard is less than 0.05 (i.e., p-value=
0.04095, 0.01275, 0.0046, respectively), indicating a significant
improvement was made. However, the two sampling methods
(colabfold and colab_seq_temp) using the colab sequences
databases (ColabFold DB) to generate MSAs have lower average
TM-score of best models than NBIS-AF2-standard on the
common targets, suggesting that their MSA quality may be
somewhat lower than that of the MSAs of NBIS-AF2-standard on
average. However, it is worth noting that the average TM-score of
the best models generated by the four sampling methods together
(i.e., default, default_seq_temp, original and ori_seq_temp) is
0.8065, lower than 0.8105 of pooling the models generated by all
the individual MSA and template sampling methods in Table 3 in
the single-chain structure prediction on the common targets,
showing that although some sampling methods (i.e., colabfold
and colab_seq_temp) cannot generate best models with higher
TM-score than NBIS-AF2-standard on average, they may still
generate some best models for some targets. The results show that
increasing the diversity of MSAs and templates can improve the
quality of the best models predicted by AlphaFold2.

The performance of the different sampling methods in terms of
the top1 models ranked by AlphaFold2’s pLDDT scores is shown
in Fig. 2b. The average TM-score of the top1 models generated by
the combine method for 62 common targets is 0.786, higher thanT
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0.77 of NBIS-AF2-standard without significant difference
(p-value= 0.05938) according to one-sided Wilcoxon signed
rank test. In Fig. 2c, the TM-score difference between the top1
model of the combine method selected by AlphaFold2’s pLDDT
score and the top1 model of NBIS-AF2-standard as well as the
number of models of the combine method is reported for each
target. On most targets, the difference is positive, i.e., the top1
model of the combine method has a higher TM-score than NBIS-
AF2-standard. As shown in Fig. 2b, four sampling methods (i.e.,
default, default_seq_temp, original and ori_seq_temp) have
higher average TM-score of top1 models than NBIS-AF2-
standard on the common targets, but there is no significant
difference between each of them and NBIS-AF2-standard.

To better compare the performance between the in-house
sampling methods that generated models for most of the CASP15
targets, the average TM-scores of the top1 models from the six
sampling methods are shown in Fig. 2d, ordered by their average

TM-score of the top1 models. The results of the one-sided
Wilcoxon test indicate that there is no significant difference
between original and ori_seq_temp, original and default_seq_-
temp in terms of the TM-score of the top1 models. However,
there is significant difference between original and each of the
other three sampling methods (default, colabfold, colab_seq_-
temp), with the p-value of 0.04604, 0.01678 and 0.01846
respectively.

To quantify the distribution of the similarity of the models
generated by different methods, the average pairwise similarity
score (PSS) of the models produced by each method is calculated.
A higher average PSS indicates that the models in the model pool
of a method are more similar, while a lower PSS suggests the
presence of multiple or more diverse conformations in the model
pool. To visualize the results, the average PSS of the models from
combine, default, default_seq_temp, original, ori_seq_temp,
colabfold and colab_seq_temp are plotted for each of the 58

Fig. 2 In-depth analysis of the sampling methods. a The comparison between the TM-scores of the best models generated by each MSA and template
sampling method and the NBIS-AF2-standard on the common full-length targets. The per-target mean (or median) TM-score of each sampling method and
the NBIS-AF2-standard is located and reported by the black dot in the box (or located by a vertical line). b The comparison between the TM-scores of the
top1 (rank1) models generated by each MSA and template sampling method and the NBIS-AF2-standard on the common full-length targets. The per-target
mean (or median) TM-score of each sampling method and the NBIS-AF2-standard is located and reported by the black dot in the box (or located by a
vertical line). c The TM-score difference between the top1 model selected by AlphaFold2 pLDDT score in combine are plotted against the top1 model of the
NBIS-AF2-standard. The number of models in the combine are specified near the boxes for each target. d The comparison between the TM-scores of the
top1 models generated by original, ori_seq_temp, default_seq_temp, default, colabfold and colab_seq_temp on the common 58 full-length targets ordered
by the average top1 TM-scores. The per-target mean (or median) TM-score of each sampling method is located and reported by the black dot in the box
(or located by a vertical line). e The average pairwise similarity score (PSS) of models from combine, default, default_seq_temp, original, ori_seq_temp,
colabfold and colab_seq_temp on each of the 58 common targets. If the average PSS values are almost the same, the dots denoting the values for a target
overlap. In this case, the average PSS of the models from combine (red dot) is plotted on the top covering the other dots denoting the almost same values.
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common targets in Fig. 2e. In case the average values are almost
the same, the dot denoting the average PSS of the combine model
pool is always plotted at the top, which may cover the dots
denoting the almost same values of the other methods. The figure
shows that, for 33 out of 58 targets, the average PSS of the
methods is greater than 0.9, indicating that they all generated
models of similar/same conformations. However, for 22 out of 58
targets, the average PSS of the combine model pool is less than
0.8, suggesting there is a diverse set of models in the model pool.
Interestingly, for T1104, T1179, T1119, T1123, T1178 and T1154,
some methods generated very similar conformations (e.g., the
average PSS of colabfold models generated for T1104 is 0.8751),
while the other methods (e.g., default_seq_temp) generated
models with more different conformations (the average PSS of
default_seq_temp for T1104 is 0.6247). The diversity of the MSAs
and templates used by the different methods increases the variety
of models in the combine model pool for these targets. The
average TM-score of top1 models of the combine method on the
33 targets that has PSS value greater than 0.9 is 0.8858, only
slightly higher than 0.8823 of NBIS-AF2-standard, indicating that
the targets are mostly easy and generating more models from
diverse MSAs and templates only have a small effect on the
performance. However, on the 22 targets for which the PSS value
of top1 models of the combine method is less than 0.8, the
average TM-score of the top1 models of the combine is 0.6344,
notably higher than 0.6073 of NBIS-AF2-standard, indicating that
these targets are mostly harder ones and generating more models
from diverse MSAs and templates has a larger effect on the
performance. Indeed, for 14 out of the 22 targets, the top1 model
in the combine model pool has a higher TM-score than that of
NBIS-AF2-standard, showing that the increased variety of models
improves the quality of the models for 63.64% of these targets.

The effect of Foldseek structure alignment-based refinement
method. MULTICOM_refine used a Foldseek structure
alignment-based iterative refinement method with AlphaFold2 to
refine the top 5 models selected for a single-chain monomer
target. In CASP15, the refinement method was only applied to 23
out of 27 single-chain monomer targets. It was not applied to the
tertiary structural models extracted from predicted complex
structures because refining tertiary structures alone without
considering the interaction with the partners would likely make
the structural models worse. Although the average GDT-TS of the
refined models and the original models is not significantly dif-
ferent (0.7887 versus 0.7910) as shown in Supplementary Table 7,
there are some cases where the refinement method significantly
improved the quality of the initial model.

Figure 3 compares the initial model of T1180 (GDT-TS=
0.7322) and the refined model submitted by MULTICOM_refine
(GDT-TS= 0.8951), which is the best model among all CASP15
models for this target predicted by all the CASP15 predictors. In
this case, Foldseek was able to find four similar structures as
templates, while the sequence-based template searching found
only one of the four templates. Foldseek also found several
structure alignments added into the MSA.

To investigate the factors that caused the improvement on
T1180, we performed the following post-CASP15 experiments
with AlphaFold2 to generate 15 models respectively, which was
the total number of models produced/used during the refinement
process. The refinement process used the five models of the
“default” sampling method as initial models to generate 5 models
in each of the three refinement iterations, resulting in 15 refined
models in total for selection.

In the first experiment, the default sampling method was used
to generate 15 models for T1180. The GDT-TS of the top1 model

is 0.8583, higher than 0.7322 of the top1 model among the five
models initially generated by the default sampling method, but
lower than 0.8951 of the final refined model from the refinement.
The experiment indicates that increased sampling can yield
models of higher quality, but still cannot reach the quality of the
refinement process.

In the second experiment, the combined alignments in each
iteration of the refinement process along with the sequence
search-found templates were fed to AlphaFold2 to generate 15
models. The GDT-TS of the top1 models for each iteration is
0.666, 0.8661 and 0.8806. The final score of 0.8806 is very close to
0.8951 of the final refined model submitted to CASP15,
demonstrating that iteratively adding Foldseek-found structure
alignments into the MSA in the refinement process is a reason for
the improvement in model quality.

In the third experiment, the four templates (3JS3A, 3JS3B,
3NNTB, 4H3DB) identified by Foldseek along with the initial
MSA were provided to AlphaFold2 to generate 15 models. The
GDT-TS of the top1 model of the refinement process is 0.71,
much lower than 0.8951 of the final refined model submitted to
CASP15, indicating that the structural templates is not the reason
leading to the model quality improvement. Furthermore, we used
one template 4H3DB four times as structural templates for
AlphaFold2 to generate models, resulting in a top1 model with
GDT-TS of 0.7231, much lower than 0.8951 of the final refined
model submitted to CASP15. This further confirms that adding
more templates into the AlphaFold2 model generation is not the
reason that the refinement process produced the high-quality
models in CASP15.

The importance of considering protein-protein interaction in
predicting the tertiary structure of a monomer that is a subunit
of a protein assembly. Out of 68 full-length tertiary structure
prediction targets, 41 targets are a subunit of a protein assembly.
The single-chain structure prediction for such a target cannot
consider the interaction between the target and its interaction
partners in the assembly, while the assembly structure prediction
takes into account the interaction and is expected to generate
better structural models for it.

Figure 4a compares the GDT-TS of the best model generated
from the single-chain structure prediction with those of the best
model extracted from the assembly structures generated by the
assembly structure prediction on the 38 out of 41 targets,
excluding the three subunits of H1114 (e.g., T1114s1, T1114s2,
T1114s3) because full-length models for H1114 were not
generated by the MULTIOM system during CASP15. The latter
has higher GDT-TS than the former for 36 out of 38 targets
(94.7%), validating that considering the protein-protein interac-
tion (i.e., the folding context) is important to predict the tertiary
structure of a target that interacts with other proteins to form an
assembly.

Figure 4b, c shows how the assembly structure prediction
considering protein-protein interaction generated a much better
model than the single-chain structure prediction without
considering protein-protein interaction for T1157s2 (a chain of
heteromultimer H1157) and T1173 (a chain of homomultimer
T1173o). For T1157s2, the GDT-TS of the tertiary structure
model extracted from the assembly model is 0.7408, much higher
than 0.5858 of the monomer model predicted by the single-chain
structure prediction. Compared with the native structure (Fig. 4b),
the main difference between the two models is in the leftmost (C-
terminal) domain that interacts with other chains in H1157.
Without considering the protein-protein interaction between
chains, it is hard to accurately predict the structure of the domain
and its orientation. For T1173 (Fig. 4c), the GDT-TS of the model
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extracted from the assembly structure predicted by the assembly
structure prediction is 0.9203, much higher than 0.5502 of the
single-chain structure prediction. The reason is that T1173 is one
of the three identical chains of a homo-trimer T1173o, in which
the three chains tightly interact with each other. Without the
interaction partner information, it is impossible for the single-
chain structure prediction to accurately predict the structure of a
domain of the target and its orientation.

Relationship between MSA and model quality. It is known that
the quality (e.g., the depth) of multiple sequence alignments
has an impact on the quality of predicted tertiary structures.
Figure 5A plots the average GDT-TS of the models generated by
the default AlphaFold2 in the MULTICOM system against the
logarithm of the Number of effective sequences (Neff) of the
input MSA for the 91 domains from the 65 full-length targets
(excluding T1114s1, T1114s2, and T1114s3) in Fig. 5A. The
correlation between the logarithm of Neff and the GDT-TS is
0.4906, which is weak. However, if the domains belonging to an
assembly target are excluded, the correlation between the two
increases to 0.8374 (Fig. 5B), which is a much stronger correlation
(Fig. 5B). Moreover, on the domains that are a part of the
assembly targets, the correlation between the GDT-TS and
the logarithm of the Neff is −0.009. The results clearly show that
the depth of MSAs can explain the quality of the tertiary struc-
tures predicted for single-chain monomer targets, but it has little
correlation with the quality of the tertiary structures predicted for
multiple chains in a protein assembly where the protein-protein
interaction plays an important role in shaping the tertiary
structures of the chains.

Among the 91 domains, T1122-D1 and T1131-D1 have no
other homologous sequences in their MSAs, i.e., their MSAs
contain only one sequence (i.e., itself). The average GDT-TS of
the tertiary structural models generated for the two domains is
lower than 0.25, i.e., there is no good model among the dozens of
models that AlphaFold2 generated for the two targets from their
single-sequence MSA input. Before some special algorithm is
developed to address this challenge of predicting protein structure

from a single sequence, it might be useful to run AlphaFold2 with
different parameters to sample many more models, hoping some
good models may be generated occasionally.

Predicting structures for large multi-domain proteins. For
some large multi-domain proteins, it was time-consuming and
computationally expensive to build the structure using Alpha-
Fold2. Therefore, domain segmentation was applied to build the
structure for very long sequences during the CASP15. For
instance, for T1169 consisting of 3364 residues, we first built a
model using the template-based structure prediction model using
an early version of MULTICOM21. The template alignments
showed that the first 350 residues and the last 614 residues could
not be aligned to any templates and therefore were not folded in
the structure. The first 350 residues and the last 614 residues were
fed for the single-chain structure prediction to generate models
for them separately. The full-length models for the target were
also generated by AlphaFold2. Then, the poorly folded first 350
residues and last 614 residues in the top-ranked full-length
models were replaced by the top-ranked models generated for
each region separately to produce the final full-length models for
T1169.

Comparison between MULTICOM server predictors and
human predictors. The MULTICOM human predictors (MUL-
TICOM and MULTICOM_human) used all the models generated
by the MULTICOM servers and some additional models for some
targets generated between the server prediction deadline and the
human prediction deadline, particularly for the targets belonging
to large protein assemblies. For some targets belonging to protein
assemblies, more assembly structures were generated to extract
more tertiary structural models for them. For instance, for targets
T1137s1 and T1137s2 belonging to a protein complex (e.g.,
H1137), the server predictors used the sequence of a single chain
(T1137s1 or T1137s2) to predict its tertiary structures because the
sequences of other chains were not available when the server
prediction was made, while the human predictors were able to
predict the quaternary structures of the protein assembly first and

Fig. 3 An example (T1180) of the Foldseek structure alignment-based refinement. The illustration of the Foldseek structure alignment-based refinement
on T1180, where the quality of the input model has been significantly improved (GDT-TS from 0.7322 to 0.8951).
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then extracted tertiary structures of the single chain from them as
the tertiary structure predictions. This significantly improved the
quality of the tertiary structure models predicted for these targets.

Supplementary Table 8 reports the average GDT-TS of top 1
models for all 94 domains, 39 domains from the single-chain
targets, and 55 domains from the targets belonging to protein

assemblies predicted by our two human predictors (MULTICOM,
MULTICOM_human) and four server predictors (MULTICO-
M_egnn, MULTICOM_deep, MULTICOM_refine, MULTI-
COM_qa). Compared with the best MULTICOM server
predictor - MULTICOM_refine, the best MULTICOM human
predictor - MULTICOM performed slightly better on the 94

Fig. 4 The comparison between the single-chain structure prediction and the assembly structure-based prediction. a The plot of the GDT-TS of the best
tertiary structural model generated by the assembly structure prediction (y-axis) for each of the 38 targets against that of the best model generated by the
single-chain structure prediction. The assembly structure prediction generated better models than the single-chain structure prediction for 36 out of 38
targets (dots above the red line). In some cases, the increase of the GDT-TS score is substantial. The comparison between the best model generated by the
single-chain structure prediction and the best model extracted from the assembly structure generated by the assembly structure prediction for (b) T1157s2
(a chain of heteromultimer H1157) and (c) T1173 (a chain of a homomultimer T1173o).
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domains in terms of the average GDT-TS score (0.8073 versus
0.7964) with no significant difference. They performed very
similarly on the 39 domains from 27 single-chain targets (0.7520
vs 0.7538). The reason is that the size of the model pool of
MULTICOM_refine is similar to that of MULTICOM. MULTI-
COM somewhat outperformed MULTICOM_refine on the 55
domains from 41 targets belonging to protein assemblies in terms
of the average GDT-TS (0.8464 versus 0.8266), and the difference
is significant (p-value= 0.02934 according to one-sided Wilcoxon
signed rank test). One reason is that MULTICOM generated
more assembly models for the assembly targets (e.g., H1137) to
extract tertiary structures for the targets belonging to them.
Particularly, for some targets such as T1137s1 and T1137s2,
MULTICOM was able to extract the tertiary structures for them
from the predicted assembly structures (e.g., H1137), but
MULTICOM_refine only could use the single-chain structure
prediction to generate structures for them, causing a big
difference in the quality of their models.

Comparison of quality assessment methods of ranking struc-
tural models. We compare the three quality assessment (QA)
methods used to select models for each target by the MULTI-
COM server predictors and the MULTICOM human predictors,
including pLDDT score generated by AlphaFold2, average pair-
wise similarity score between a model and all other models cal-
culated by APOLLO, and the average of the two scores
(APOLLOpLDDT_avg). The performance is measured by two
metrics: the average per-target ranking loss (i.e., per-target
ranking loss = the GDT-TS score of the best model - the
GDT-TS score of the top 1 selected model) and the average per-
target correlation on all the targets (i.e., the per-target correlation
for a target = the Pearson’s correlation between the predicted
quality scores and real GDT-TS scores of the models of the tar-
get). We compare the three QA methods on the structural models
for these targets generated before the server prediction deadline
(called server_model_dataset) and on all the structural models for
the targets generated before the human prediction deadline
(called human_model_dataset) respectively to investigate how
their performance may change as the data set is changed. The
human_model_data_set contains the sever_model_data_set and
some additional models generated for some targets.

In addition to APOLLOpLDDT_avg, a simple way to combine
pLDDT score and APOLLO score, another way is to use
AlphaFold2 pLDDT score to calculate the weighted average
pairwise similarity score between a model and all other models of
a target, denoted as APOLLOpLDDT_weight. The weighted pairwise

similarity score for model j is
∑n

i 6’jSim
ij �pLDDTi

n�1 , where pLDDTi is the
pLDDT score of any other model i, Simij is the structural
similarity score (i.e.,TM-score) between model i and j, and n is
the number of the models for a target.

The performance of the five QA methods on the server_mo-
del_dataset and the human_model_dataset is reported in
Fig. 6A–F and Fig. 6G–L respectively. It is worth noting that
the models in both the server_model_dataset and the human_-
model_dataset were all internally predicted by our in-house
MULTICOM system without including any models predicted by
the third-party predictors. On the server_model_dataset
(Fig. 6A–F), AlphaFold2 pLDDT score selects models with the
highest average GDT-TS of 0.7517 on the 68 targets (Fig. 6A) and
the highest average GDT-TS of 0.7598 on the 27 single-chain
targets (Fig. 6C), while APOLLOpLDDT_weight has the highest
correlation of 0.3880 on the 68 targets (Fig. 6B). However, on 41
targets whose models include both ones extracted from assembly
models and the ones predicted by the single-chain structure
prediction, APOLLOpLDDT_avg has the highest average GDT-TS of
0.7483 (Fig. 6E), while APOLLOpLDDT_weight has the highest
correlation of 0.4690 (Fig. 6F). The results show that AlphaFold2
pLDDT, APOLLO and APOLLOpLDDT_avg are complementary
and their relative performance depends on the structural models
to be evaluated to some degree. However, it is still difficult to
combine APOLLO and AlphaFold2 pLDDT scores to obtain
consistently better results.

On the human_model_dataset (Fig. 6G–L), APOLLOpLDDT_weight

has the highest average GDT-TS of 0.7511 on the 68 targets
(Fig. 6G), while APOLLO has the highest correlation of 0.4470 on
them (Fig. 6H). On 27 single-chain targets, AlphaFold2 pLDDT has
the highest average GDT-TS of 0.7542 (Fig. 6I), while APOL-
LOpLDDT_avg has the highest correlation of 0.4490 (Fig. 6J). On the 41
targets that are chains of protein assemblies, APOLLOpLDDT_weight

has the highest average GDT-TS of 0.7551 (Fig. 6K) and APOLLO
has the highest correlation of 0.5051 (Fig. 6L). Overall, APOL-
LOpLDDT_weight has higher average GDT-TS with AlphaFold2

Fig. 5 The logarithm of the Neff plotted against the average GDT-TS of the structural models. A On 91 domains from 65 full-length targets. B On 39
domains from 27 single-chain full length targets.
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pLDDT (0.7511 vs 0.7508) and higher correlation (0.4414 vs 0.3825)
on the 68 full-length targets. It also has a lower ranking loss (0.0384)
on the 41 targets belonging to assemblies than AlphaFold2 pLDDT,
APOLLO and APOLLOpLDDT_avg, while the correlation of APOL-
LOpLDDT_weight (0.4995) is only lower than APOLLO (0.5051). In
Supplementary Fig. 2a, the ranking loss of APOLLOpLDDT_weight is
plotted against that of AlphaFold2 pLDDT for the 68 full-length
targets, which shows that APOLLOpLDDT_weight performed better on
the 41 targets from assemblies but worse on the 27 single-chain
targets.

Finally, it is worth noting that AlphaFold2 pLDDT score is a
single-model quality assessment (QA) method that evaluates the
quality of a model without using any other model as input, while
the other three QA methods use the pairwise similarity between
models for model evaluation and therefore are multi-model QA
methods. Therefore, AlphaFold2 pLDDT score does not depend
on the diversity of the models in the model pool, while the multi-
model QA methods requires that the model pool contains a
sufficient number of relatively good models so that they may have
higher pairwise similarity scores than the bad models as shown in
Supplementary Fig. 2b. For T1180, there are more models with
lower qualities (0.65~0.75), which makes APOLLO methods (e.g.,
APOLLOpLDDT_weight) difficult to select the best model. For
T1106s1 which is a chain of H1106, most of the models have
GDT-TS close to 0.85, and therefore APOLLO methods can easily
select a good model. In contrast, AlphaFold2 pLDDT score

performs well on T1180 but not quite well on T1106s1 whose
models include both the ones predicted by the single-chain
structure prediction with AlphaFold2 and the assembly structure
prediction with AlphaFold-Multimer. One possible reason may
be that the pLDDT scores for the two kinds of models generated
by AlphaFold2 and AlphaFold-Multimer were generated by the
two different predictors and therefore were not completely
comparable.

Discussion
Our CASP15 results show that the MULTICOM system built on
top of AlphaFold2 and AlphaFold-Multimer can predict high-
accuracy protein tertiary structure for most targets and sig-
nificantly improve the quality of structure prediction over the
standard AlphaFold2 tool. One main reason for improvement is
to use the protein assembly (complex) structure prediction to
generate tertiary structure prediction for protein targets that are
subunits of protein assemblies/complexes, considering the impact
of protein-protein interaction on protein folding. Failing to
consider protein-protein interaction for the non-globular protein
targets (e.g., T1137s1, T1137s2, and T1137s3) that intertwine with
their partners can lead to poor structure predictions.

Another main reason for improvement is to adjust the input
(i.e., multiple sequence alignments and structural templates) to
sample more structural models. Our CASP15 experiment
demonstrates that using diverse MSAs and templates as input can

Fig. 6 The performance of the four quality assessment methods on all 68 full-length targets, 27 single-chain full-length targets, and 41 full-length
targets that are chains of the assembly targets, respectively. A Per-target GDT-TS and B per-target correlation on the server_model_dataset of 68 full-
length targets, where the average of per-target GDT-TS or correlation is shown in the box. C Per-target GDT-TS and D per-target correlation on the
server_model_dataset of 27 single-chain full-length targets. E Per-target GDT-TS and F per-target correlation on the server_model_dataset of 41 full-length
targets. G Per-target GDT-TS and H per-target correlation on the human_model_dataset of 68 full-length targets. I Per-target GDT-TS and J per-target
correlation on the human_model_dataset of 27 single-chain full-length targets. K Per-target GDT-TS and L per-target correlation on the
human_model_dataset of 41 full-length targets. The vertical line in each box denotes the median per-target value. The red dot in each box denotes the
mean per-target value.

COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-023-00991-6 ARTICLE

COMMUNICATIONS CHEMISTRY |           (2023) 6:188 | https://doi.org/10.1038/s42004-023-00991-6 | www.nature.com/commschem 11

www.nature.com/commschem
www.nature.com/commschem


significantly improve the quality of the best models generated by
AlphaFold2. The quality of the models for single-chain protein
targets has a strong correlation with the depth of MSAs, but the
quality of the models for protein targets that are subunits of
protein assemblies has little correlation with the depth of MSAs,
indicating that other factors such as protein-protein interaction
play a more important role in determining the quality of models
for such targets.

Even for some very hard FM targets with shallow MSAs (e.g.,
T1122), the single-chain structure prediction based on Alpha-
Fold2 in MULTICOM still can generate some good models with
correct topology (TM-score > 0.5), although the chance of gen-
erating a correct model for such a target is much lower. Sup-
plementary Table 9 reports the fraction of models with correct
topology for each CASP15 full-length target. The fraction of
models with correct topology for T1122 is 2%, while all the
models for all TBM targets except two outliers (T1160 and
T1161) with alternative conformations have correct topology. For
most FM and FM/TBM targets, more than 50% of their models
have correct topology. But some hard targets, mostly the ones
whose MSAs only have a few effective sequences or even a single
sequence (e.g., T1130, T1131), have no model of correct topology
among about dozens of models generated for them, indicating
predicting tertiary structures from very shallow MSAs or a single
protein sequence is still a major challenge. Generally speaking,
harder a target is, the lower the probability of generating a model
with correct topology for it. Therefore, it is expected that sam-
pling more models for a hard target is necessary to obtain some
high-quality models for such a target. In this case, other sampling
strategies not explored in this work (e.g., predicting the structures
only from MSAs without using templates, using the mono-
mer_ptm network of AlphaFold2 instead of the monomer net-
work, and adjusting the dropout rate of the AlphaFold2 tested by
some top CASP15 predictors such as the Wallner group) can be
applied to generate more models too. In fact, we performed post-
CASP15 experiments on CASP15 targets using two different
sampling strategies (i.e., predicting structures only from MSAs
without using templates and using the monomer_ptm network of
AlphaFold2 instead of the monomer network). Although there is
no significant difference between each of these two sampling
methods and the default setting of AlphaFold2 on average, for
some targets, they can generate better models than the default
setting. For example, for target T1119, AlphaFold2 can predict
structure with 0.9619 TM-score without using any templates or
generate a model with 0.9578 TM-score using the monomer_ptm
network instead of the monomer network, both of which are
higher than 0.8657 of the top1 model generated by using the
default setting of AlphaFold2. Combining these sampling meth-
ods with our MSA and template diversity-based sampling
methods to generate more models (e.g., hundreds or thousands)
may further improve prediction accuracy. Therefore, it would be
interesting to investigate how many models need to be generated
in order to sample a correct structural model for a hard protein
target in the future.

It is also useful to investigate if AlphaFold2 can generate a
correct structural model for any protein target no matter how
hard it is and how shallow MSA is, provided that a sufficient
number of structural models is generated. If the answer to this
question is yes, then the problem of sampling protein structures
can be considered fully solved.

As AlphaFold2 can generate some good structural models for
most if not all protein targets if it samples a sufficient number of
structural models, the next significant challenge is to select good
structural models from a large number of models generated by
AlphaFold2. The selection problem can be difficult for hard tar-
gets for which only a small portion of models are of good quality.

As shown in our CASP15 experiment, although both the pLDDT
score predicted by AlphaFold2 and other model quality assess-
ment methods tested (e.g., the average pairwise similarity score
(PSS) between a model and other models) can do a reasonable
job, they still cannot select very good models for some targets.
The AlphaFold2 pLDDT score is complementary with PSS, but it
is still challenging to combine them to consistently obtain better
results in evaluating the quality of protein tertiary structural
models. Quite some model quality assessment methods had been
developed before AlphaFold2 was made available, but they were
trained to evaluate the quality of models generated by pre-
AlphaFold2 structure predictors and might not perform well with
AlphaFold2 models. Therefore, a new generation of model quality
assessment methods that can improve the estimation of the
accuracy of AlphaFold2-generated models needs to be developed.

Once a structural model is selected for a target, there is a
possibility to further improve its quality through model refine-
ment. Our CASP15 experiment demonstrates that the Foldseek
structure alignment-based approach of augmenting MSAs and
structural templates can help AlphaFold2 to generate some
models better than the initial input model. In some cases, the
improvement is substantial, even though the approach does not
significantly improve model quality substantially on average. The
results suggest that it may be useful to further explore the
direction of using protein structure search and alignments to
improve AlphaFold2-based protein structure prediction and
sampling.

Finally, it is still challenging to sample protein tertiary struc-
tures for very large protein targets that have thousands of resi-
dues. First, sampling structural models for such targets requires a
lot of GPU memory that is not readily available and takes a lot of
time. Second, the MSAs generated for the entire target sequence
could be shallow (e.g., only 5 homologous sequences for T1125).
Third, the MSAs generated for them may not cover the entire
target sequence well. Particularly they can be shallow for some
domains of the target (e.g., the first 350 residues and last 614
residues of T1169). In this case, in addition to sampling full-
length models, it is useful to divide the target into multiple
domains/regions to predict the structures of individual domains/
regions separately and then combine them with the full-length
models.

Conclusion
We developed several methods to improve the process of using
AlphaFold2 to generate protein structures and blindly tested
them in the CASP15. We demonstrate that generating diverse
MSAs and structural templates using different alignment proto-
cols and protein databases can improve the quality protein
structural models. It is also critical to use the protein assembly
structure prediction to predict the tertiary structures for targets
that are subunits of protein assemblies in order to account for the
impact of protein-protein interaction on protein folding. More-
over, an iterative structure-alignment based approach of gen-
erating MSAs and identifying templates can further refine some
protein structures predicted by AlphaFold2 substantially.

Interestingly, our MULTICOM system that only generated a
small number of protein structural models for CASP15 targets on
average was able to sample at least one model with correct
topology for the vast majority of targets from diverse alignments
and structural templates, even though the probability of gen-
erating good models depends on the quality of the input (e.g.,
MSA) and difficulty of the target. This raises an interesting
question if AlphaFold2 can generate a good structural model for
any target of any difficulty provided a sufficient number of
models are simulated, and if so, how many simulations are
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needed for a target. Given AlphaFold2’s powerful capability of
sampling protein tertiary structures, we also investigated different
methods of ranking AlphaFold2 structural models. Our experi-
ments show that AlphaFold2 pLDDT score and the pairwise
similarity score perform reasonably well and are complementary.
As the AlphaFold2-based model sampling reaches a very high
level, it is imperative to develop more effective methods to rank
protein tertiary structural models generated by AlphaFold2.

Methods
Overview of the MULTICOM tertiary structure prediction
system. Figure 7 illustrates the overall workflow of the MULTI-
COM tertiary structure prediction system, which is a combination
of the single-chain structure prediction and the assembly struc-
ture prediction. As shown in Fig. 7, the sequence of an input
monomer target is always fed into the single-chain structure
prediction module to generate structural models. The single-
chain structure prediction process consists of five sequential steps:
(1) multiple sequence alignment sampling, (2) template identifi-
cation, (3) monomer structural model generation, (4) structural
model ranking, and (5) Foldseek-based iterative model refine-
ment. Except for Step 3 (monomer structural model generation)
that is handled by the pre-trained deep learning models of

AlphaFold2, all the other steps are largely based on our custo-
mized algorithms. If the target is a chain of a protein assembly,
the target and other chains in the protein assembly are also fed
into the assembly structure prediction module built on top of
AlphaFold-Multimer22 to generate quaternary structures. The
tertiary structures of the target are then extracted from the pre-
dicted quaternary structures and are added to the structural
model pool generated by the single-chain protein structure pre-
diction. The details of the algorithms are described in the next few
sections.

Single-chain tertiary structure prediction.

(1) Monomer multiple sequence alignment (MSA) sampling.
Given the sequence of a protein target, different kinds of
MSAs are sampled from various sequence databases including
UniRef3023 (UniRef30_2021_02), UniRef9024 (version 04/24/
2022), BFD25, 26, MGnify clusters27 (mgy_clusters_2022_05)
and the ColabFold DB28. HHblits29 is applied to search
homologous sequences on UniRef30, UniRef90 and BFD
using parameters -n= 3, -e= 0.001, -maxseq=1_000_000,
-realign_max=100_000, -maxfilt=100_000, -min_prefilter_-
hits=1000. JackHMMER30 is applied for searching UniRef90

Fig. 7 The overall workflow for the MULTICOM protein tertiary structure prediction system. The single-chain structure prediction process consists of
five sequential steps: (1) multiple sequence alignment sampling, (2) template identification, (3) monomer structural model generation, (4) structural model
ranking, and (5) Foldseek-based iterative model refinement. If the target is a chain of a protein assembly, the target and other chains in the protein
assembly are also fed into the assembly structure prediction module built on top of AlphaFold-Multimer to generate quaternary structures. The tertiary
structures of the target are then extracted from the predicted quaternary structures and are added to the structural model pool generated by the single-
chain protein structure prediction.
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using parameters --F1= 0.0005, --F2= 0.0005, --F3=
0.0000005, --incE=0.0001, -E= 0.0001, -N= 1. MMseqs231

is used to search ColabFold DB. Moreover, a DeepMSA32-like
alignment tool is executed in the background to iteratively
search the UniRef90, huge Integrated Microbial Genomes
(IMG) database33 and the metagenome sequence databases
(e.g., BFD, Metaclust26, MGnify clusters) to generate
alternative alignments for hard targets having few homo-
logous sequences (e.g., < 200). The combination of different
sequence search tools and sequence databases yields different
kinds of MSAs for a target (Table 3). Only default MSA and
default_seq_temp are generated by the default program of the
original AlphaFold2 from the updated version of the same
protein sequence databases used by the default AlphaFold2.
The other MSAs are generated by different sequence search
tools or from different sequence databases.

(2) Template identification. Similar to the template searching
process in AlphaFold2, the structural templates are
identified by searching the sequence profile of a target
built from its MSA against a template database (pdb70 or
PDB_sort90) using HHsearch34. The MSA of a target
generated from UniRef90 is used as input for HHsearch to
search pdb70 (version 3/13/2022) in the AlphaFold2
package and our inhouse template database (PDB_sort90)
curated from Protein Data Bank11 (PDB) to identify
alternative templates. PDB_sort90 was constructed by
several steps as follows: Firstly, all the structures in both
pdb and mmcif format were downloaded from PDB.
Secondly, for the same PDB code, only one structure file
in pdb or mmcif format was kept. Thirdly, the structure of
each chain was extracted from every structure file. Fourthly,
the structures that have a resolution > 8 angstrom, less than
30 residues, or more than 90% sequence identity with other
proteins were filtered out. Fifthly, the MSA for each
remaining protein was generated by using HHblits to
search it against the UniRef30_2021_03 database. Finally,
the MSAs were used by the ffindex_build tool in the
HHsuite-3.2.035 package to create the PDB_sort90 template
database. The template database is used to identify
templates for a target by using HHsearch to search its
MSA against the template database (Table 3).

(3) Monomer structural model generation. To leverage the
power of AlphaFold2, a customized version of AlphaFold2
that accepts pre-generated MSA and templates is built and
used to generate models. Different from the default
parameters of the original AlphaFold2, the value of
parameter num_ensemble is changed from 1 to 8 and
num_cycle from 3 to 8 to perform more extensive model
sampling. The customized AlphaFold2 takes each pair of
MSA and its corresponding templates in Table 3 that have
been generated for a target as input to generate 5 structural
models. Multiple combinations of MSAs and templates lead
to up to 40 models generated for each target, depending on
the number of MSAs generated for the target. If the depth
of the default MSA is larger than 200, two MSAs (img and
img_seq_temp) will not be used to generate models.

(4) Structural model ranking. The APOLLO12 model ranking
score (the average pairwise structural similarity between a
model and the other models of the same target) and the
global pLDDT score generated by AlphaFold2 are used to
rank the structural models, respectively. The average of the
two is also used to rank them. Moreover, a deep learning
method - DeepRank36 is used in model ranking. An early
version of EnQA37 – a 3D-equivariant deep learning model
is applied to rank the structural models when appropriate.

(5) Foldseek structure alignment-based refinement. We devel-
oped a novel iterative model refinement method based on
Foldseek15 structure alignment (comparison) method
(Supplementary Fig. 3). An initial structural model is used
as input for Foldseek to search for similar structures in the
PDB_sort90 template database and the AlphaFoldDB (the
version released before March 2022). The output of the
Foldseek includes the e-value (and TM-score38 if TMalign39

option is used) of the similar structural hits as well as the
structural alignments between the target model and the hits,
which are converted into the sequence alignments between
them. The sequence alignments are added into the original
MSA used to generate the initial structural model to
generate a deeper MSA. The redundant sequences in the
new MSA are removed by HHfliter4 according to the 90%
sequence identity threshold. The filtered MSA and the top-
ranked structural hits found by Foldseek are used as MSA
and template inputs for the customized AlphaFold2 to
generate the refined models. If the highest AlphaFold2
pLDDT score of the newly refined models is higher than
that of the input model, the refinement process is repeated
with the refined model with the highest pLDDT sore as
input until the number of the refinement iterations reaches
5 or the pLDDT does not increase anymore. The refined
model with the highest pLDDT score generated in the
refinement process is used as the output model.

Prediction of tertiary structures of proteins involving in
protein-protein interaction by integration of monomer and
assembly structure prediction. If an input monomer target is a
chain of a protein assembly interacting with other chains, the
assembly structure prediction module13 built on top of
AlphaFold-Multimer is applied to generate structures for the
protein assembly first. After collecting the structural models with
the pickle files for the protein assembly generated by AlphaFold-
Multimer, the tertiary structure of the target and the local pLDDT
scores of its residues are then extracted from the quaternary
structure and its corresponding pickle file and added into the
structural model pool for the target. Different from predicting the
tertiary structure of the target from its sequence alone, this
approach considers the interaction between the target and other
chains and therefore can predict the changes on tertiary struc-
tures induced by the protein-protein interaction.

Implementation of MULTICOM server and human predictors
in CASP15. The MULTICOM system was used to generate
protein structural models for the monomer targets in the CASP15
experiment for the server prediction before the server prediction
deadline. After the server prediction deadline and before the
human prediction deadline, it continued to generate some addi-
tional models for hard targets or large targets if necessary. The
models were ranked by different quality assessment methods,
leading to the four different MULTICOM server predictors and
two human predictors as follows.

If a monomer target is not a part of a protein assembly,
MULTICOM_egnn server predictor used the average of the
pLDDT score and the APOLLO pairwise similarity score to rank
models. MULTICOM_refine refined the top five models selected
by the average ranking and selected the final five models with the
highest pLDDT scores from the 5 unrefined models and 5 refined
models. MULTICOM_deep used pLDDT score to rank and select
models. MULTICOM_qa refined the top 5 models generated by
the AlphaFold2 with the default MSA in Table 3. The two human
predictors (MULTICOM and MULTICOM_human) selected

ARTICLE COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-023-00991-6

14 COMMUNICATIONS CHEMISTRY |           (2023) 6:188 | https://doi.org/10.1038/s42004-023-00991-6 | www.nature.com/commschem

www.nature.com/commschem


monomer models from a generally larger model pool than the
server predictors. The refined models were also added into the
pool for ranking. DeepRank13 was used to rank models for
MULTICOM_human, while the average ranking of the pairwise
similarity score and AlphaFold2 pLDDT score was used to rank
models for MULTICOM. The ranking may be manually adjusted
according to the human inspection.

If the monomer target is a chain of a protein assembly, the
tertiary structural models for the target extracted from the
assembly models were preferred to the structural models
generated by the single-chain structure prediction without
considering the interaction between chains. Generally, the top
ranked models extracted from assembly models were used as the
top 3-4 models submitted to CASP15, while the remaining
models submitted could be the top ranked models generated by
the single-chain tertiary structure prediction.

Data availability
The protein structures of CASP15 monomer targets are available at https://
predictioncenter.org/download_area/CASP15/targets/. The protein structural models
and analytical data generated in this study are available at https://doi.org/10.5281/
zenodo.8215939. All other data are available from the corresponding author on
reasonable request.

Code availability
The source code of MULTICOM add-on package for AlphaFold2 are available at: https://
github.com/BioinfoMachineLearning/MULTICOM3.
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